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A relativistic correction to the electronic charge density of an atom embedded in jellium is 
investigated within the framework of a relativistic Thomas-Fermi theory. A numerical solution 
is obtained by successive approximation for Li, Rb and Hg atoms. The relativistic correction 
for a heavy atom in jellium is found to be significant not only in the vicinity of the nucleus but 
also at greater distances from it. 

1 INTRODUCTION 

The electronic states of an atom embedded in solid and liquid metals have 
recently been the subject of an extensive study by the density functional 
formalism. In such study, host metals are usually replaced by jellium',2 
for simplicity, or by an effective medium in which the electron potential is 
averaged spherically around the nucleus of an embedded a t ~ m . ~ , ~ , ~  The 
latter method, called as a spherical-solid model, has recently been generalized 
so as to apply to an impurity ion dissolved in a simple liquid.' 

An investigation of the electronic states of an atom embedded in jellium 
or effective medium can serve also as a first step towards a better, quantitative 
understanding of various physical properties of rather complicated solid 
and liquid alloys which have recently been revealed to show an interesting 
metal-nonmetal transition, such as Cs-Au, Mg-Bi and Li-Pb alloys. Since 
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114 K. HOSHINO A N D  A .  HASEGAWA 

such alloys are composed of very heavy elements, it is essential to take into 
account the relativistic effect on the electronic states of an embedded atom. 
As far as we know, however, no work has been published on it, though the 
relativistic effect has been studied on an isolated atom or ion in the Thomas- 
Fermi a p p r o x i m a t i ~ n ~ ? ~  and in the Hartree-Fock-Slater appro~ ima t ion .~ ,~  

In this paper, we investigate the relativistic effect on the electronic charge 
density around an atom embedded in jellium within the framework of a 
relativistic Thomas-Fermi approximation. As a result, we consider that we 
can understand qualitative feature of the relativistic effect in this simple 
model, and that results are useful as a proper reference for our next, more 
elaborate calculation of the electronic and the transport properties using 
the density function formalism. 

2 FORMALISM 

2.1 Model 

We consider the jellium model of metals, where the ions are thought to 
form a uniform positive background of charge and the valence electrons 
are treated as an electron gas. Furthermore, we make a vacancy, which is a 
spherical hole in the positive background, and embed an atom at the centre 
of the vacancy. We denote the positive and the electronic charge densities 
by p+(r) = en+(r) and p,(r) = -en&-), respectively, where n+(r) and n,(r) 
are corresponding number densities. In our model, there are three param- 
eters: Z,; an atomic number of the embedded atom, Z ;  the valency of the 
host metal and no( = $ ~ - ' ( r ~ a ~ ) - ~ ,  a. being the Bohr radius); the number 
density of the uniform background. In terms of these parameters, the positive 
number density of our model is given by 

(1) n+@) = no w - Rws) + 2, d(r), 

where O(r) is the step function and Rw, is the Wigner-Seitz radius satisfying 
the condition 

$nR&,n, = 2. (2) 

2.2 Thomas-Fermi theory 

The total charge density must satisfy the Poisson equation 

V24(r) = -4n(p+(r) + pe(r)> = -4ne(n+(r) - n,(r)>, (3) 
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PERTURBED ELECTRON LIQUID 115 

where 4(r) is the electrostatic potential. In the Thomas-Fermi theory, the 
electronic number density is expressed in terms of the electrostatic potential 
as follows: 

Equation (4) is derived from the expression for the chemical potential 

h2k; h2ki(r) 
2m 2m p = - = - -  e4(r>, 

together with the relations kF = (3712n0)1'3 and kF(r) = (37~'n,(r))"~. By 
substituting Eq. (4) into Eq. (3), we obtain the Thomas-Fermi equation for 
the electrostatic potential as 

V24(r)  = -4ne n+(r)  - no 1 + -4 (r )  . i ( r21 
We have solved this nonlinear differential equation by the successive 
approximation, which proved to be an effectual method for the vacancy 
problem." The recursive solution is given for the i-th iteration by 

where 

Following Arponen et al." we equate k to the Thomas-Fermi inverse 
screening length: k = (4k, /~ca,) '~~.  Here both charge density and potential 
are assumed to be spherically symmetric with respect to the nucleus of the 
embedded atom. As the initial spatial form of q5(r) for a self-consistent 
iteration procedure, we use Latter's interpolation formula." We find that 
the self-consistent calculation is quite stable and the convergence is fast. 

2.3 Relativistic Thomas-Fermi theory 

Following the method of Vallarta and Roseq6 we replace the kinetic energy 
term in Eq. (5) by the relativistic expression. Then, the chemical potential 
is given by 

p = (cZA2k:(r) + m ' ~ ~ ) ~ ' '  - mc2 - e4R(r), (9) 
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where the superscript R stands for the quantities in the relativistic Thomas- 
Fermi theory. With the relation kF(r)  = ( 3 7 ~ ~ n 3 r ) ) ” ~ ,  we obtain the rela- 
tivistic electronic number density as 

The second term in the square bracket is the relativistic correction. As is 
seen from Eq. (9), the relativistic effect in the Thomas-Fermi theory means 
the relativistic variation of mass with velocity. It is known that nf(r) cannot 
be normalised because nf(r) is proportional to F3 when r approaches zero. 
This difficulty can be avoided by introducing the finite size of the nucleus as 
pointed out by March.’ For this purpose we change the lower limit of the 
integration in the recursive solution from zero to r , ,  where rc is the effective 
radius of nucleus and we use the well-known relation r, = r,,,41’3, ro = 
1.1 x cm and A being the mass number. 

By putting Eq. (10) into the Poisson equation 

V24R(r) = -4ne(n+(r) - nf(r)), (1 1) 

we can obtain the relativistic Thomas-Fermi equation for the electrostatic 
potential as 

V24”(r> 

(12) 
We have solved this relativistic Thomas-Fermi equation numerically by 
the same method as that employed to solve the non-relativistic Thomas- 
Fermi equation, Eq. (6). For an isolated neutral atom, i.e. n+(r) = Z A  6(r), 
Vallarta and Rosen6 solved the relativistic Thomas-Fermi equation by a 
first-order perturbation method, while we do not rely on a perturbation 
theory but determine the solution in a fully self-consistent manner. 

3 NUMERICAL RESULTS AND DISCUSSIONS 

We choose the parameters characterising the jellium as follows, 2 = 3 and 
rs = 2.5, which can be considered as an average polyvalent metal. As for 
the embedded atom, we choose the three atoms, i.e. Li(Z, = 3), Rb(2, = 37) 
and Hg(2, = 80), which correspond, respectively, to the atoms with small, 
intermediate and large atomic numbers, because we want to investigate 
the dependence of the relativistic effect on the atomic number. The values 
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PERTURBED ELECTRON LIQUID 117 

O 'I+, 21 +* I 
r (a.u.1 Li Hg Rws 

FIGURE 1 The non-relativistic Thomas-Fermi electronic number densities of the isolated 
neutral Li and Hg atoms (broken curves) and of those embedded in jellium (solid curves). 
The Wigner-Seitz radius Rws (3.606 a.u.) and the Pauling ionic radii of Li+' (1.13 a.u.) and 
Hg" (2.08 a.u.) are shown by arrows. 

of r, of Li, Rb and Hg atoms are 3.96 x 
a.u., respectively. We use the atomic units in the following. 

Figure 1 shows the non-relativistic Thomas-Fermi electronic number 
densities of the isolated Li and Hg atoms and of those embedded in the 
jellium. The Wigner-Seitz radius defined by Eq. (2) and the Pauling ionic 
radii" of Li" and Hg+2 are also shown by arrows. The number densities 
of the isolated and the embedded atoms are very similar inside the Pauling 
ionic radii and are quite different outside them. This result shows that the 
electronic states of the ionic cores of the isolated atoms change very little 
when they are embedded in the jellium. The different behaviours at large 

9.16 x and 1.22 x 
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0' I I I I I 

0 1 2 3 4 5 6  
r (a.u.) 

1 

f (r) 

0 

- 1  c -011 
FIGURE 2 (a) The non-relativistic Thomas-Fermi electronic number densities of Li, R b  
and Hg atoms embedded in jellium. (b) The functionf(r) related to the electrostatic potential 
byf(r) = r$(r) /Z,e  for Li, R b  and Hg atcms. 

distances originate from the different boundary conditions, i.e. when r 
increases n,(r) approaches zero for the isolated atom and no for the embedded 
atom. 

To examine the correlation between the electronic number density and 
the electrostatic potential for the embedded atom, we show, for Li, Rb and 
Hg atoms, the non-relativistic Thomas-Fermi electronic number densities 
in Figure 2(a) and the functionf(r) defined by Eq. (8) in Figure 2(b). The 
boundary conditions for f ( r )  are: f ( r )  + 1 when r + 0 and f ( r )  + 0 when 
r + co. Physically speaking, the positive f ( r )  corresponds to the attractive 
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PERTURBED ELECTRON LIQUID 119 

potential and the negative f(r)  to the repulsive potential for the electrons. 
Since the ionic radius of Li' is much smaller than R,, and there are only 
three electrons in Li atom, there appears a repulsive-potential region for 
Li atom, where the electronic number density is less than that of the uniform 
background. In the small r region, the attractive force decreases as the 
atomic number increases, which is due to the screening effect. For larger r, 
thef(r) for Hg has longer tail than that for Rb, corresponding to the longer 
tail of n,(r) of Hg atom. 

To investigate the relativistic effect on the electronic number density and 
its dependence on the atomic number, we show in Figure 3 the ratios of the 
relativistic electronic number densities to the non-relativistic ones, n;(r)/n,(r), 
for Li, Rb and Hg atoms. The characteristic features seen from Figure 3 are 
as follows : 

i) The electronic number density increases in the vicinity of the nucleus 
due to the relativistic effect and becomes smaller than the non-relativistic 
one at larger distances, which results from the conservation of the number of 
electrons. 

1.10 

4 r ;  
1.05 

1 .oo 

0.95 
0 0.5 1 2 3 4 5  

r (a.u.1 
FIGURE 3 The ratio of the relativistic Thomas-Fermi electronic number densities of Li, 
Rb and Hg atoms embedded in jellium to the non-relativistic ones. 
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ii) The distance from the nucleus, where the ratio is extremely greater 
than unity, increases in proportion to the atomic number. This can be also 
derived from Eq. (10). Since p/2mcZ = a2ki/4 6 1 (where IX = 1/137.037) in 
our model, the relativistic correction, i.e. the second term in the square 
bracket of Eq. (lo), is negligibly small unless I(e/p)dR(r)l >> 1. Therefore 
the relativistic correction to the electronic number density is appreciable 
unless (p /2mc2)  x (e$"(r)/p) 6 1, i.e. roughly speaking r 9 2,/37558. 

iii) The larger the atomic number is, the slower the ratio approaches 
unity. This means that, for heavy atoms embedded in jellium, the relativistic 
correction to the electronic number density is important not only in the 
vicinity of the nucleus but also at larger distances from it. 

To compare the result of our fully self-consistent method with that of a 
first-order perturbation method due to Vallarta and Roseq6 we show in 
Figure 4 the ratio n:(r)/n,(r) for the isolated Hg atom calculated by both 
methods. In the vicinity of the nucleus, the relativistic correction to n:(r) is 
too large to treat by perturbation theory. For this reason, the ratio of theirs 

1 .lo 

nR(r) 
xr: 

1.05 

1.oc 

0.95 
0 0.5 1 2 3 4 5  

r (a.u.1 
FIGURE 4 The ratio of the relativistic Thomas-Fermi electronic number density of the 
isolated Hg atom to the non-relativistic one. The solid curve shows the result of our fully self- 
consistent method and the broken curve shows that of a first-order perturbation method by 
Vallarta and Rosen.6 
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0.5 

0 

embedded atom 

- 
0 1 2 3 4 5 6  

r (Q.u.) 

FIGURE 5 The function f ( r )  for the embedded and the isolated Hg atoms 

is smaller than that of the present calculation. On the other hand, at larger 
distances, the ratio of ours is smaller than that of theirs. This reflects the 
fact that, from the conservation of the number of electrons, the larger the 
ratio is in the vicinity of nucleus, the smaller it is at larger distances. 

By comparing the ratio of the embedded atom shown in Figure 3 with 
that of the isolated atom shown in Figure 4, we realise that the ratio of the 
embedded atom approaches unity at larger distances much faster than that 
of the isolated atom. The reason for this difference is the screening effect due 
to the electrons injellium. As is shown in Figure 5, the functionf(r) decreases 
faster for the embedded atom than for the isolated atom. The characteristic 
length for the decay of f ( r )  corresponds to the Thomas-Fermi screening 
length, k- '  = 1.01 a.u. 

4 S U M M A R Y  

We have investigated the relativistic correction to the electronic charge 
density of an atom embedded in jellium by solving a relativistic Thomas- 
Fermi equation with the self-consistent iteration method. We have shown 
that the relativistic correction becomes important as the atomic number of 
the embedded atom increases, and that the relativistic correction for a 
heavy atom in jellium is significant not only in the vicinity of the nucleus 
but also at greater distances from it. 
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122 K. HOSHINO AND A. HASEGAWA 

In our theory the investigation is restricted to the total charge density 
inevitably by the Thomas-Fermi theory and absolute magnitude of the 
change in the charge density due to relativity seems actually small relative 
to the total charge density. However, if we go beyond the Thomas-Fermi 
theory and use a more refined theory such as the Dirac equation, the 
relativistic effect may be different from state to state, as Liberman et al.’ 
have shown. Therefore, the relativistic correction to a certain electronic state 
can emerge more evidently. This tendency has been confirmed also by a 
relativisitic APW band structure calculation for the cesium-chloride type 
CsAu crystalline compound.’3914 Thus, our next problem is to calculate 
quantitatively the electronic structure and the transport coefficients of 
Cs-Au alloys and others. An elaborate calculation based on the Dirac 
equation with the local-density approximation is now in progress. 
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